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Recap

• Distributional semantic models represent word meaning 
through vectors, or embeddings


• Embeddings reflect the contexts a word occurs in:


• By counting contexts (PPMI model, SVD)


• By applying machine learning (inspired) approaches



Evaluating  
Semantic Models

• Intrinsic evaluation: 
 
Do they provide good representations of meaning?


• Extrinsic evaluation: 
 
Are they useful for analyzing natural language?



word2vec

Mikolov et al. (2013)



Tasks (examples)

• Language model


• Lemmatizing & pos-tagging


• Dependency parsing


• Word-sense disambiguation


• Semantic role labeling

• Sentiment & opinion mining


• Named Entity Recognition & 
Classification


• Textual entailment


• Coreference resolution


• Machine translation



Features
• Common features (for many tasks):


• POS-tag


• Word


• Lemma


• ngrams


• More advanced:


• Chunks


• Syntactic dependencies


• Word sense

Highly Informative  
for many tasks!!!



Feature representation

• Basic, old-school: one-hot vector: 
 
 
 
 
 
 
 
 
 

from Shaffy (2017)



Distributional  
Semantic Models

• Can provide high-density representations with less 
dimension


• Provide similar representations for words with similar 
surface behavior


• Capture a range of semantic & syntactic properties



Evaluating  
Semantic Models

• Intrinsic evaluation: 
 
Do they provide good representations of meaning?


• Extrinsic evaluation: 
 
Are they useful for analyzing natural language?



Intrinsic Evaluation

• Ranked similarity & relatedness pairs


• Analogy sets



Similarity
• Evaluation for ``general purpose’’ models that capture semantic 

similarity


• Assumption: 
=> attributional similarity: the more attributes that are shared 
between two concepts, the more similar contexts they occur in 
=> taxonomic similarity: concepts with high attributional 
similarity are also taxonomically similar (synonyms, antonyms, 
co-hyponyms, hyper- and hyponyms)


• Evaluation set-up: can the model identify which word pairs are 
semantically similar and which are not? 



Similarity Tasks
• General procedure:


• humans indicate how semantically similar two words are:


• word pairs are rated on a scale


• humans indicate which out of two word pairs is more 
semantically similar


• average rating by multiple annotators leads to score per 
word pair


• word pairs are ranked according to their similarity



Dataset
• WS-353 (Finkelstein et al. 2001): 353 pairs ranked for similarity & relatedness on a scale


• WS-353-sim: subsection with just similarity or low score


• WS-353—rel: subsection capturing other forms of relatedness


• MEN (Bruni et al. 2012): 3,000 pairs ranked for similarity & relatedness by having 
humans select the more related pair out of two pairs


• SimLex-999 (Hill et al. 2015): 999 pairs annotated for similarity only: rated on a scale of 
0-6 looking at 7 pairs simultaneously.


• Radinsky (Radinsky et al. 2011): 280 pairs of words occurring in the New York times 
and DBpedia with varying PMI scores. The general approach follows WS-353.


• Luong rare words (Luong et al. 2013): at least one of the two words in the pair is rare 
(5-10, 10-100, 100-1,000, 1,000-10,000 occurrences in wikipedia), filtered using 
WordNet.



Evaluating on Similarity

• Rank word-pairs by distributional semantic model:


• the smaller the angle between two vectors, the higher 
their similarity


• Compare ranking by semantic model to human ranking 
using Spearman rho



Spearman rho

• Calculation:


• d = difference between ranking by model & human


• n = number of samples in the dataset


• (In case of ties in the ranking: assign the mean to all pairs) 

ρ = 1 −
6∑ d2

i

n(n2 − 1)



Analogy test sets
• Can distributional semantic models capture analogy?


• Paris:France ~ Rome:Italy


• queen:king ~ woman:man


• talk:talked ~ bend:bent


• man:men ~ pencil:pencils


• strong:stronger ~ sweet:sweeter



Toy example

from Sommerauer



Analogy test

• Vking - Vman + Vwoman     Vqueen


• VRome - VItaly + VFrance     VParis


• Vstronger - Vstrong + Vsweet     Vsweeter

≈

≈

≈



Analogy test

• Vking - Vman + Vwoman     Vqueen


• VRome - VItaly + VFrance     VParis


• Vstronger - Vstrong + Vsweet     Vsweeter

≈

≈

≈

Must be closest vector to 
the outcome of the sum



Analogy test

• Vking - Vman + Vwoman     Vqueen


• VRome - VItaly + VFrance     VParis


• Vstronger - Vstrong + Vsweet     Vsweeter

≈

≈

≈

Must be closest vector to 
the outcome of the sum

…excluding all vectors 
left of  the equation



What works best?



We don’t know…

Levy et al. (2015)

Levy et al. (2015)



Discussing 
intrinsic evaluation

• Do you think these evaluation methods have problems?  
If so, what are they?


• How can these datasets be used? If at all?



Criticism from literature

• Similarity (Gladkova & Drozd 2016, among others):


• Determining which pair is more similar (money,dollar) vs 
(tiger,mammal) is difficult: is the difference in score 
meaningful?


• Who are the annotators (on mechanical Turk)?



Alternative validation 
Schnabel et al (2015)

• Identifying the top candidate:


• present a word with 6 terms from its k-nearest neighbors


• let annotators pick the most similar term


• Identifying the intruder:


• present a word with its k-nearest neighbors + a 
randomly selected word


• let annotators pick the intruder



Criticism from literature

• Analogy:


• Linzen (2016): if a and a* are close, a - a* + b will be very 
close to b 

• Gladkova et al. (2016): overall results are biased because 
of overrepresentation of specific types of analogies



Linzen (2016)



Linzen (2016)

• Vanilla:  

• Add: 

• Only-B:

x * = argmax
x′�

cos(x′�, a * −a + b)

x * = argmax
x′�∉{a,a*,b}

cos(x′�, a * −a + b)

x * = argmax
x′�∉{a,a*,b}

cos(x′�, b)



Linzen (2016)

• Ignore-A:  

• Add-opposite: 

• Reverse (add): 

• Reverse (B-only)

x * = argmax
x′�∉{a,a*,b}

cos(x′�, a * +b)

x * = argmax
x′�∉{a,a*,b}

cos(x′�, − (a * −a) + b)

x * = argmax
x′�∉{a,a*,b*}

cos(x′�, a − a * +b*)



Linzen (2016)
• Outcome: 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