
Enhancing Empirical Research for Linguistically Motivated

Precision Grammars

* Thesis Summary *

Antske Fokkens

1 Introduction

Grammars, both those built by linguists and the
natural objects they are intended to model, are
complex objects (Bierwisch, 1963; Bender, 2008;
Bender et al., 2011).1 Syntactic phenomena and
therefore their analyses interact. Furthermore, of-
ten more than one formal analysis can account for
a given phenomenon. These two properties make
it notoriously difficult to make strong assertions
about analyses for grammars of natural language.
Grammar engineering improves this situation over
pen-and-paper syntax allowing researchers to build
and manipulate models of much greater complexity.
In fact, it is extremely difficult to verify if all inter-
actions between phenomena in a language model
behave correctly without implementing them and
checking them with a computer (Bierwisch, 1963;
Müller, 1999).

Implemented grammars thus have the advantage
that their correctness can be verified, but the exact
influence of choices made when designing a gram-
mar remains difficult to foresee. Furthermore, even
if the grammar’s behaviour can be tested empiri-
cally, it remains difficult to investigate the exact
impact of individual analyses. The objective of this
thesis is to enhance the possibilities of empirical re-
search on linguistic precision grammars by propos-
ing a new methodology that provides a more sys-
tematic approach to grammar development. I will
briefly elaborate on the main idea in this introduc-
tion.

In any given grammar engineering project, anal-
yses are implemented in some temporal order. But
analyses of phenomena interact and the analytical

1Some parts of this summary have been taken from the
full thesis and previously published work, notably Fokkens
(2011) and Fokkens and Bender (2013).

choices already made influence the relative attrac-
tiveness of alternatives analyses for phenomena en-
countered at a later choice point. The order in
which phenomena are added thus affects the re-
sulting grammar (Fokkens, 2011). In this thesis, I
argue that better grammars can result if grammar
engineers can break free of the temporal sequence of
implementation, and that metagrammar engineer-
ing is an effective way to do so.

Challenges related to deeply embedded analyses
are familiar to most grammar engineers working
on large scale grammars. Francis Bond (p.c.) re-
ports that it is often hard to identify parts of the
grammar which relate to obsolete analyses in the
Japanese grammar Jacy (Siegel and Bender, 2002).
Montserrat Marimon (p.c.) reports that there are
analyses in her Spanish grammar (Marimon, 2010)
for clitics and word order that need revisions, but it
would be an elaborate undertaking to make these
changes. Tracy King (p.c.) reports a discussion
within ParGram (King et al., 2005) whether ad-
jectives have subjects. The English LFG grammar
(Riezler et al., 2002) was changed a few times, but
this was so time consuming that King decided to
call the last change final.

The work presented in this thesis is, to my knowl-
edge, the first to make a fundamental problem in
grammar engineering and syntactic research ex-
plicit, namely, the challenge of dealing with incon-
clusive evidence for analyses and the unforeseeable
interaction with phenomena added in the future.
It is also the first work I am aware of that pro-
poses a solution that addresses this problem. The
key idea is that alternative plausible analyses for
linguistic phenomena are added to a metagram-
mar, where metagrammar refers to a system that
can generate computational grammars. This meta-

1

grammar can generate all possible combinations of
these analyses automatically, creating different ver-
sions of a grammar that cover the same phenom-
ena. The grammar engineer can test directly how
competing analyses for different phenomena inter-
act, and determine which combinations are possible
(after minor adaptations) and which are incompat-
ible. Alternative analyses can be maintained while
new analyses are developed, thus reducing the in-
fluence of the order in which phenomena are inves-
tigated. The interaction between alternative anal-
yses with phenomena can be tested empirically af-
ter new analyses have been added to the grammar.
As such, metagrammar engineering provides a more
systematic method for grammar development that
enhances empirical experiments on the grammar’s
behaviour.

The enhancement of empirical research by us-
ing a metagrammar forms the main contribution
of this thesis. In addition, the implemented ap-
proach provides several contributions to developing
hpsg grammars.2 These contributions include in-
creased modularity, multilingual grammar develop-
ment, maintaining alternative analyses for different
applications or different dialects, a phenomenon-
based organisation of the grammar, facilitating
grammar development by multiple engineers and
the possibility of including or excluding rare phe-
nomena. The method and related tools have been
evaluated through the implementation of a large
scale metagrammar for German that can generate
alternative analyses. These studies have led to new
(though preliminary) insights in grammars for Ger-
man. The thesis furthermore includes studies that
explore multilingual aspects of the approach con-
firming the increased modularity and possibility of
sharing analyses (partially) across languages. This
shows how the approach can be used to increase lin-
guistic insight in multilingual studies. Finally, the
thesis provides an extensive study of how a common
language independent core has been used in largely
independently developed grammars using an algo-
rithm that can identify which parts of the grammar
are actually used and which are obsolete.

I will elaborate on these contributions in the rest
of this summary which is structured as follows. Sec-
tion 2 describes climb,3 the metagrammar engi-

2Head-driven Phrase Structure Grammars (Pollard and
Sag, 1994)

3Comparative Libraries of Implementations with a

neering approach that I developed as part of my
research. This is followed by a description of the
evaluation of the approach through the develop-
ment of gclimb, climb for Germanic languages in
Section 3. In Section 4, I provide an overview of
the multilingual studies carried out as part of this
thesis. Related approaches and reflections on how
the idea behind climb could be adopted in other
grammar engineering projects are described in Sec-
tion 5. Section 6 provides concluding remarks.

2 CLIMB

This section describes the climb approach for
metagrammar engineering. I will first describe how
climb emerged from the Grammar Matrix (Bender
et al., 2010). This is followed by a description of
three variations of climb implemented as part of
the thesis.

2.1 The Grammar Matrix and
CLIMB

The Grammar Matrix customisation system allows
users to derive a starter grammar for a particu-
lar language from a common multilingual resource
by specifying linguistic properties through a web-
based questionnaire. The resulting hpsg grammars
are intended for parsing and generation with the
LKB (Copestake, 2002) using Minimal Recursion
Semantics (Copestake et al., 2005, MRS) as pars-
ing output and generation input. After the starter
grammar has been created, its development contin-
ues independently: engineers can thus make mod-
ifications to their grammar without affecting the
multilingual resource. Internally, the customisation
system works as follows: The web-based question-
naire registers linguistic properties in a file called
“choices” (henceforth choices file). The customisa-
tion system takes this choices file as input to cre-
ate grammar fragments, using so-called “libraries”
that contain implementations of cross-linguistically
variable phenomena. Depending on the defini-
tions provided in the choices file, different analy-
ses are retrieved from the customisation system’s
libraries. The language specific implementations
inherit from a core grammar which handles basic

(grammar) Matrix Basis (Fokkens, 2011; Fokkens et al.,
2012; Fokkens and Bender, 2013)

2

phrase types, semantic compositionality and gen-
eral infrastructure, such as feature geometry (Ben-
der et al., 2002).4

Climb shares the overall setup of the Gram-
mar Matrix customisation system of using choices
files that define linguistic phenomena and Python
libraries that generate hpsg grammars in tdl5

(Copestake, 2002), the delph-in6 joint reference
formalism, based on the phenomena defined in the
choices file. However, the two approaches serve rad-
ically different purposes and therefore make differ-
ent use of grammar customisation.

The customisation system remains a black box
for its users who are (potentially novice) gram-
mar engineers working with any language. The
users provide linguistic definitions and obtain a
grammar that they can alter and extend manu-
ally. The project emphasizes typological cover-
age. It can only add phenomena slowly, as each
one must be grounded in thorough typological re-
search. Climb, on the other hand, generalises the
idea of grammar customisation to metagrammar
engineering, placing the customisation source code
under control of the (usually expert) grammar en-
gineer, so that different levels of parameterisation
can be achieved in individual grammar develop-
ment projects. Users are encouraged to explore
the possibilities of the customisation system and
expand it for their language-specific needs. Us-
ing grammar customisation in the development of
language-specific resources frees the grammar en-
gineer to focus on phenomena as they manifest in
the language(s) at hand, without concern for the
full range of typological variation. This allows the
grammar engineer to include more phenomena and
more detailed analyses of them. The next subsec-
tion will describe metagrammar engineering with
the original implementation of climb.

2.2 Procedural CLIMB

The original version of climb (procedural climb)
builds directly on the Grammar Matrix, by simply

4hpsg uses typed feature structures (Carpenter, 1992) to
model natural language grammars. Chapter 2 of the thesis
provides an introduction to hpsg and how its formal prop-
erties relate to climb.

5Type Description Language
6delph-in (http://www.delph-in.net) is an interna-

tional initiative working on hpsg grammars for NLP appli-
cations.

taking the customisation system (minus the web
front-end), and allowing grammar engineers to ex-
tend it for particular languages. A climb meta-
grammar takes a choices file as its input and pro-
duces a grammar in tdl. The choices file specifies
phenomena and properties that are generated using
the metagrammar’s libraries, which mainly consist
of procedural functions that add type definitions
to the grammar based on definitions in the choices
file.

The metagrammar code contains control state-
ments which check for linguistic properties and se-
lected analyses in the choices file. Based on these
properties it triggers statements which output tdl
accordingly. The control statements can verify
whether analyses are compatible with other choices
or whether additional constraints are required for
correct interaction. Fig. 1 in the appendix gives
a sample analysis illustrating how this is imple-
mented in procedural climb.

Improving the metagrammar in this approach
consists of the following steps. The first steps are
the same as in regular grammar engineering: the
grammar writer identifies a phenomenon that (s)he
would like to capture (better), creates test data to
verify the analysis and designs an analysis (or mul-
tiple analyses). However, (s)he does not implement
this directly in the grammar, but writes a function
in the metagrammar that can create the analysis
and associates it with a definition in the choices
file. Then grammars with the new analysis are gen-
erated and tested on the relevant test data. Cor-
rections are made to the metagrammar based on
the outcome of the tests. In some cases, alterna-
tive implementations for the same analysis need to
be added to ensure the new analysis interacts ap-
propriately with all alternative analyses present in
the metagrammar. Some combinations of analyses
may turn out to be incompatible.

Procedural climb can support alternative anal-
yses in grammars in a highly flexible manner. A
draw-back of this approach is that it requires im-
plementing procedural functions in Python. Even
for grammar engineers proficient in programming,
it can be a nuisance to switch back and forth be-
tween declarative definitions of constraints in the
grammar and procedural code invoking constraints
based on choices in the metagrammar.

3

2.3 Declarative CLIMB

Declarative climb avoids flipping back and forth
between declarative and procedural programming.
The definitions in declarative climb are written
directly in tdl, where paths in type definitions
may optionally be abbreviated. A small set of ad-
ditional declarative statements is used to identify
where analysis-specific parts of an implementation
start. The definitions in the choices file indicate
which analyses in the metagrammar should not be
selected for the generated grammar. Procedural
Python implementations are still used to interpret
the choices file and to merge type definitions from
different locations in the metagrammar, but gram-
mar engineers do not need to write these functions
in order to use declarative climb. Fig. 2 in the ap-
pendix illustrates an implementation in declarative
climb.

In addition to procedural and declarative climb,
which both assume that the grammar is built
within climb from the ground up, I developed
short-climb.7 This method provides support for
maintaining alternative analyses for grammars that
have been developed the traditional way (i.e. not
using a metagrammar) so that existing large-scale
grammars can also make use of the approach.

This section described the origin of climb and
introduced the three variations of climb that were
developed as part of the thesis. The original form
of climb, procedural climb, is the most powerful
of the three and was used in the evaluation research
described in the next sections.

3 Evaluating CLIMB

The evaluation of climb addressed two aspects
can determine the methodology’s merit. First, the
main question, namely, whether climb can be used
in long-term grammar development projects was
investigated through the development of gclimb.
Second, I carried out studies using the grammars
produced by gclimb that would be impossible or
very difficult to carry out when using a traditional
approach to grammar engineering.

7Starting High On a Roof Top climb

3.1 Large-scale CLIMB grammars

Evaluating the impact of using climb on long-term
and large-scale grammar development is a non-
trivial task. There are many aspects that influence
the quality of a grammar and the speed in which
it can be developed. The grammar engineer, their
experience and knowledge about the language are
among the biggest influential factor. It is thus not
possible to carry out a controlled experiment where
climb and traditional grammar development are
compared and all influential factors are maintained
equal. Possibly a set of such experiments would
provide a solid indication of its exact influence, but
given that the main effect can only be observed on
large grammars this is not feasible. A compara-
tive study can nevertheless provide insight into the
methodology’s influence on grammar development.

I evaluated climb through the development of
gclimb and compared it to the development of
Cheetah (Cramer, 2011), another grammar for Ger-
man that was developed by a Dutch PhD student
in the same formalism in one person year. The goal
was to develop a metagrammar that can create Ger-
man grammars with alternative analyses covering
at least all phenomena that the Cheetah core covers
in Cheetah’s test set, or at least, to discover how
close I could get in one person year.

The alternative analyses that were included in
the grammar covered word order and auxiliaries:
two phenomena that occur in almost every sentence
and highly interact with each other as well as other
phenomena in the language. A detailed overview of
the included phenomena with basic indications of
how their treatment differed from Cheetah is pro-
vided in Section 5.1.3 of the thesis. This overview
gives an indication of the complexity of the analyses
in gclimb.

After six person months, gclimb covered slightly
more phenomena than Cheetah. The grammars
were also evaluated on a portion of the TiGer cor-
pus, where Cheetah outperformed gclimb due to
reasons of efficiency, and the independently de-
veloped Babel corpus where gclimb outperformed
Cheetah handling more linguistic phenomena cor-
rectly. Furthermore, gclimb provides more in-
depth semantic analyses and, in the first weeks of
its development, time was spent to include alter-
native analyses for Dutch and German. Overall,
the evaluation indicated that the two grammars are

4

comparable in scale and complexity.
In addition to the influential factors already men-

tioned above, it is clear that no definite conclusions
on development speed can be drawn by comparing
the development of gclimb and Cheetah. However,
it was shown that gclimb covers a wide range of
linguistic phenomena indicating that the approach
scales and is suitable for large-scale grammar de-
velopment. Furthermore, gclimb was developed in
less than half the time of Cheetah’s core grammar
while partially addressing crosslinguistic variation
and adapting a more challenging standard for its se-
mantic output. This strongly indicates that if the
method were to have a negative impact on develop-
ment time, this stays within an acceptable range.

3.2 Enhancing empirical research

As mentioned in the previous section, gclimb con-
tains alternative analyses for word order and aux-
iliaries. The grammar supports both the “stan-
dard” hpsg analysis for verb second order (based
on Uszkoreit (1987)’s GPSG analysis) and aux-
iliaries (from Hinrichs and Nakazawa (1994)) for
German as well as the analyses Bender developed
for Wambaya (Bender, 2010). The second word
order analysis for Wambaya is more basic than
the analysis for German and has also been in-
cluded in the Grammar Matrix customisation sys-
tem (Fokkens, 2010). The alternative analysis for
auxiliaries was developed for Wambaya because of
advantages in efficiency.8

The large-scale implementation where these al-
ternative analyses are maintained provide the first
illustration of how metagrammar can enhance em-
pirical research. Grammar engineering can be used
to verify syntactic analyses (Bender et al., 2011).
Gclimb provides the means to verify the compe-
tence of the alternative analyses (i.e. can they pro-
vide the correct semantic interpretation of all well-
formed expressions and do they reject ill-formed
expressions?) in a larger context. Because all anal-
yses are automatically generated from the same
metagrammar, we can make sure that all other po-
tentially influential factors remain equal (and even
verify the correct interaction between various alter-

8A detailed description of these analyses can be found
in Chapter 4 of the thesis, Sections 4.3 and 4.4, where Sec-
tion 4.4 illustrates why the alternative analysis for Wambaya
boosts efficiency.

native accounts). This would be highly challenging,
if not to say impossible, to achieve in a traditional
grammar development approach: developing mul-
tiple grammars in parallel is not only time consum-
ing, but also increases the risk that an improvement
made in one grammar is forgotten in the other. If
an alternative analysis is integrated in a relatively
large grammar at a later stage, the original analysis
has most likely already had a significant impact on
the grammar.

In addition to the grammar’s competence, I car-
ried out two experiments addressing efficiency of
the alternative analyses included in gclimb in pars-
ing and language generation. The first experiment
compared parsing results showing that the alterna-
tive analysis for Wambaya remains more efficient
as the grammar grows, but that this difference can
be greatly reduced by constraining the non-head-
daughter in subject and complement rules in the
grammar. If no such constraints are assigned, the
difference in efficiency of the two analyses increases
significantly as the grammars grow, just as pre-
dicted by Fokkens (2011).

Similar observations are made in the second ex-
periment investigating natural language genera-
tion. This experiment furthermore examined how
specific linguistic properties of a language interact
with different analyses. Grammars with slightly
different word order properties for auxiliaries and
their verbal complements were created and their
performance was compared. An interesting aspect
of this experiment is that climb truly facilitated it.
The different grammars were created by changing a
few lines in choices files. It would be much harder to
create all these versions of a grammar by manually
adapting and maintaining them. Furthermore, the
metagrammar (again) ensures that properties that
are not related to the changes under investigation
remain stable. As such, this experiment shows that
climb facilitates research that would be extremely
difficult to carry out without the tools provided by
climb.

4 Multilingual Studies

In this section, I will describe the thesis’s main mul-
tilingual studies concerning climb and the Gram-
mar Matrix. I will first elaborate on multilingual
approaches using climb. This is followed by a de-

5

scription of insights gained into the way the Gram-
mar Matrix is used in various sources.

4.1 Multilingual aspects of CLIMB

Given the close relation with the Grammar Ma-
trix, it is not surprising that climb supports par-
allel grammar development. Multilingual grammar
development with climb is indeed similar to that
already offered by the Grammar Matrix customi-
sation system. The main difference is that when
climb is used, analyses need not be limited to the
basic properties of linguistic phenomena. The re-
source can include detailed analyses for individual
languages, because only a closed group of languages
is considered in this approach. If the languages
in question are well-documented, the full range of
variation for a phenomenon is known. Further-
more, parallel grammar development will often be
opted in case of related languages or languages that
are known to share linguistic phenomena. The dif-
ferences will therefore typically be less than the full
typological variation found in all natural languages.

This idea is explored in the context of the project
PaGES9 (Avgustinova and Zhang, 2009). Section
6.3 of the thesis describes Slaviclimb, a dynamic
component supporting the development of Slavi-
Core, a static core capturing typical Slavic phenom-
ena. The thesis outlines how a dynamic compo-
nent can be used to empirically verify Avgustinova
(2007)’s theoretical model for cross-Slavic grammar
development combining linguistic insights of Slavi-
cists with climb’s technology. Slaviclimb can cur-
rently generate the SlaviCore and Russian Gram-
mar RRG described in Avgustinova and Zhang
(2009) and Avgustinova and Zhang (2010).10

I furthermore investigated the possibilities of cre-
ating grammars for Germanic languages other than
German with gclimb. Grammars for Dutch, Dan-
ish and Northern Frisian were created and evalu-
ated. The earliest versions of gclimb contained
variations for Dutch and Danish, but these were
not maintained as the metagrammar was further
developed to cover the Cheetah test set. Dutch was
evaluated on a test set based on the original set cre-
ated for German. For Danish, the test set accom-
panying DanGram (Müller and Ørsnes, to appear)

9Parallel Grammar Engineering for Slavic languages
10See also Fokkens and Avgustinova (2013) for an expla-

nation of Slaviclimb.

was used.

Neither of the experiments led to perfect cover-
age of the test data, but the Dutch results clearly
outperformed those for Danish, with Dutch lead-
ing to coverage of 97.1%-100% and overgeneration
of 0.2%-1.0% and Danish resulting in 57.6% cov-
erage and 20.7% overgeneration. The difference in
results can be explained by the fact that the Dutch
test set largely includes the same phenomena as the
test set used to develop gclimb and that German
syntax is closer to Dutch syntax than to Danish.
It is furthermore possible that properties of Dutch
have influenced the implementations in gclimb, be-
cause it is my native language.

Despite the similarities between Dutch and Ger-
man, however, a few fundamental revisions would
be required to correct the errors in the Dutch gram-
mars currently created with gclimb. The fact that
Dutch word order was handled correctly in ear-
lier versions of gclimb shows how important it
can be to make use of climb’s possibility of main-
taining old analyses. If I had kept the original
word order analysis in parallel with the revised one,
I could have “time travelled” back to grammars
that could handle word order in Dutch and pos-
sibly avoided fundamental revisions in a complex
grammar.11 This observation has led to the con-
clusion that a multilingual resource can only sup-
port multiple languages correctly if the variations
found in these languages are taken into consider-
ation at all stages of development. On the other
hand, the Dutch gclimb grammars handle a large
part of the phenomena correctly and even the Dan-
ish grammars revealed correct behaviour for sev-
eral phenomena. It is unlikely that a similar result
could have been obtained by using only the Gram-
mar Matrix customisation system and extending
the grammars manually. The customisation system
covers significantly less phenomena and implement-
ing all phenomena covered by gclimb from scratch
would probably take several weeks. Adapting a tra-
ditionally developed delph-in grammar that con-
tains these analyses such as German grammar GG
(Müller and Kasper, 2000) for Dutch and Danish
is a highly complex task and would most likely not
lead to a similar result in such a short time.

The results on Northern Frisian, which was not

11See Fokkens and Bender (2013) or Chapter 1 of the the-
sis for the time travel reference.

6

considered at any time during the development of
gclimb, confirm this outcome. The final result us-
ing gclimb revealed coverage of 94% and no over-
generation on a linguistically motivated test set.
It was obtained in one day of work. Kilmer and
Packard’s developed a grammar with the same test
set over several weeks as part of the Knowledge
and Engineering course for NLP, reached 70.6%
of coverage and 1.8% overgeneration on the same
test set. Again, conclusions should be drawn with
care. The grammar was developed by different en-
gineers (though Packard is an expert) and Kilmer
and Packard also needed to develop the test set.
Nevertheless, the significant difference in time and
coverage indicate that gclimb provided a major
boost. This result and the outcome of the Dutch
and Danish evaluations show that gclimb indeed
offers an increased level of modularity that makes
it easier to share its implementations across lan-
guages.

Finally, the thesis examines how the climb
method may be used to create alternative gram-
mars for second language learners in Section 6.4.
A prototype to learn German adjective endings has
been implemented and an approach for making use
of parallel grammar development to capture typ-
ical mistakes of speakers of a related language is
outlined.

4.2 The Grammar Matrix

The development of gclimb led to the most exten-
sive revisions of the Grammar Matrix core since
its release. Several revisions were bug fixes and
some removed English specific properties. Because
it seemed unlikely that none of the other gram-
mars using the Matrix core ran into similar is-
sues, I investigated how individual languages use
the Matrix core. The Grammar Matrix core pro-
vides general (mostly) language independent imple-
mentations for hpsg grammars. The first step in
this investigation was to apply the spring cleaning
algorithm (Fokkens et al., 2011) to all grammars.
This algorithm identifies types that do not have
an impact on the competence of the grammar and
removes them.12 This leads to a cleaned up ver-
sion of the grammar, where types that do not have

12The competence of the grammar refers to its capabil-
ity of providing the correct bidirectional mapping between
semantic representations and surface strings.

an impact on the grammar are removed, but the
structure of the grammar is preserved. The impact
of the Grammar Matrix was investigated by look-
ing at changes that were made to the Grammar
Matrix core and the types that were removed by
spring cleaning the grammar.

The most important observation out of this in-
vestigation is that several grammar engineers made
changes to the Grammar Matrix core that form a
general improvement to the Grammar Matrix. The
current setup of the Grammar Matrix, where gram-
mar writers typically go their own way after us-
ing the Grammar Matrix for a jump start, provides
complete flexibility to grammar writers. They can
make any change that suits them without needing
to explain their motivation to fellow grammar writ-
ers. The disadvantage is that there is no need for
grammar writers to discuss the changes they make
with fellow grammar writers and often changes re-
main unnoticed by developers of other grammars
and of the Grammar Matrix. Valuable informa-
tion on how the Grammar Matrix core works is
thus lost and grammar engineers need to reinvent
the wheel when it comes to dealing with shortcom-
ings of the resource. The ParGram program (Butt
et al., 2002), where grammar engineers implement-
ing LFG grammars meet twice a year to discuss
their analyses, avoids this problem. The Grammar
Matrix and individual grammars could greatly ben-
efit from such an approach, but it is currently not
feasible to carry this out.

The study described in this section is, to my
knowledge, the first overview of the Matrix core
types that are used and changes made to the core
in different Matrix-based grammars. The spring
cleaning algorithm played an important role in this
investigation revealing that this algorithm can also
be used to support empirical investigation for lin-
guistic precision grammars.

5 Related Work

This thesis proposed to adopt metagrammar en-
gineering as a general methodology for grammar
development, so that alternative analyses can be
tested systematically at different stages of the de-
velopment process. Though my work is, to my
knowledge, the first to tackle this problem, it is
not the first work that proposes the use of a meta-

7

grammar. Moreover, different grammar engineer-
ing frameworks have proposed a variety of ways to
provide the other benefits for their approach that
climb provides for hpsg grammars, including im-
proving maintainability and consistency, increasing
modularity and supporting knowledge and code-
sharing across grammars. Chapter 7 of the thesis
provides an extensive overview of various grammar
engineering approaches, the solutions they provide
and how these solutions relate to the syntactic the-
ory the approach is based on and its main goals.
For this summary, I will restrict myself to the ap-
proaches that are closest related to climb and to
the general contributions of this thesis.

5.1 (X)MG

Metagrammars for tag were developed to provide a
level of linguistically motivated generalisation and
thereby improve the maintainability of the gram-
mar. They also contribute to the overall structure
of the grammar and have a multilingual ambition
(Candito, 1999).

The (x)mg approach clearly has a lot in common
with the approach proposed in this thesis. First,
they both use libraries (or dimensions) of basic im-
plementations in combination with code generation
to develop grammars. Second, they share the goal
of improving maintainability, modularity and the
systematic structure of the grammar. Finally, both
approaches support multilingual grammar develop-
ment, even though mgs and xmgs for tag are gen-
erally monolingual (Kallmeyer, p.c.).

On the other hand, the differences between the
approaches are also significant. The main purpose
of mg and xmg is to allow the grammar engineer
to organise the grammar in a manner that is gener-
ally done by the type hierarchy and multiple inher-
itance in hpsg grammars. Code generation thus
plays different roles in (x)mg and climb. Whereas
(x)mg uses code generation to capture generalisa-
tions, climb uses code generation to include alter-
native analyses for the same phenomenon (within
a language or crosslinguistically).

Furthermore, there is little overlap between
xmg’s organisation in dimensions and the organ-
isation in linguistic libraries in the Grammar Ma-
trix or climb. On the one hand, climb represents
basic subcategorisation and surface constraints to-
gether at several places in the metagrammar. On

the other hand, xmg does not, to my knowledge,
use the more fine grained architecture found in
climb libraries to distinguish between different
morphosyntactic properties, such as case assign-
ment or person-number-gender agreement. With
climb, linguists can define observations they make
on the surface (e.g. ambiguous morphological mark-
ings) and automatically generate a grammar con-
taining a corresponding type hierarchy.13 To my
knowledge, (x)mg does not provide such support
to grammar writers.

5.2 Modular typed unification gram-
mars

Sygal and Wintner (2011) present foundations of a
modular construction for unification grammars us-
ing typed feature structures. This research is part
of a project on mathematical and computational
infrastructure for grammar engineering.

When comparing their modular typed unifica-
tion grammars to climb, similarities in setup and
overall ideas are immediately apparent, especially
for declarative climb. As a matter of fact, Sygal
and Wintner (2011) address the LinGO Grammar
Matrix and, in particular the customisation sys-
tem, in their related work as a similar approach
that improves modularity. They point out that
the approach is different from theirs, because only
prewritten code is divided over different modules
and the grammar writer has no control over the
customisation system. This is exactly the point in
which climb differs from the Grammar Matrix. As
explained in Section 2, the grammar engineers us-
ing climb directly manipulate the libraries in the
customisation system, and are thus fully in control
of the language specific customisation system they
are creating. Both approaches allow the grammar
writer to provide partial definitions of a type hier-
archy in separate modules which can be combined
to form a full grammar. climb can, in principle,
fulfil all nine desiderata for modularity set by Sygal
and Wintner (2011) and fulfils five of them for the
same reasons (see Section 7.5.2 of the thesis for a
detailed comparison).

The main difference between the two approaches
probably is that improving modularity is the pri-

13Section 6.3 of the thesis explains how this property of
climb can be used to verify linguistic hypotheses.

8

mary goal of Sygal and Wintner (2011)’s approach.
climb, on the other hand, is the result of a prac-
tical solution to a theoretical problem. Modularity
improves through climb because it is necessary for
sharing grammar components and maintaining al-
ternative analyses at the same time (regardless of
whether alternatives are meant to support syntactic
research or to capture crosslinguistic differences).
For Sygal and Wintner (2011), modularity is a goal
in itself, with a predefined set of desiderata. This
makes their approach more principled (there are no
formal restrictions on climb modules), but it re-
mains to be seen whether this will be advantageous
in practice.

5.3 CoreGram

CoreGram is the common core of a set of hpsg
grammars developed at the Freie Universität Berlin
(Müller, 2013). Despite its hpsg background, in-
terest in linguistic precision and facilitation of shar-
ing implementations, CoreGram is a rather differ-
ent approach from climb. The organisation of
parts of the grammars across files that may be in-
cluded or excluded from the grammar is similar to
declarative climb, but the absence of code gener-
ation leaves out the option of both working on the
level of phenomena (which may entail partial def-
initions of several types) and types (mostly com-
plete type definitions with constraints related to
several phenomena) at the same time. CoreGram
does not (to my knowledge) contain an equivalent
of the dynamic component of climb that can speed
up grammar development and capture similarities
across languages where individual feature values
differ by generating lexical items or rules.

5.4 The CLIMB idea for other
projects

The proposal made in this thesis is theory and for-
malism independent. It can thus in principle be
adopted for each of the projects above as well as
the other projects outlined in my thesis, namely
GF (Ranta, 2009), ParGram (Butt et al., 2002) and
paws14 (Black, 2004; Black and Black, 2009). How-
ever, the amount of effort that would be involved

14Parser And Writer for Syntax

as well as the potential interest in adopting meta-
grammar engineering differs from one project to an-
other. Feasibility is directly related to the method
used for sharing implementations.

As far as implementation methods and feasibil-
ity are concerned, two manners of sharing code can
be distinguished: static code sharing and dynamic
code sharing. ParGram, gf and CoreGram develop
sets of definitions that can be used by individual
grammars. They share code statically. (x)mg and
paws use code generation in their systems, just
like climb. Their method is more dynamic. Even
though it is in principle possible to systematically
compare implementations using different versions
of static code, code generation truly provides a ba-
sic methodology that facilitates and stimulates this.
(x)mg would not require many changes to its ar-
chitecture to allow its users to carry out systematic
comparative research.

Another question is whether systematic compar-
ison may be of interest to the projects. As far as
they address the question of alternative possibil-
ities, the aforementioned projects tend to go for
restricting possibilities based on crosslinguistic re-
search. This is specifically mentioned in Butt et al.
(2002). Ranta (2009) also aims to share as much
as possible between grammars. In many ways, this
attitude towards alternatives makes sense. If data
cannot provide clear evidence for a particular anal-
ysis, any other indications to help and choose are
welcome. But in the end, it seems clear that test-
ing more analyses integrated into a large grammar
gives a more reliable indication than merely dis-
cussing alternatives or only trying things out at
the moment they first come up. In principle, all
approaches that are interested in optimising their
grammars could therefore benefit from a method-
ology that can help to compare analyses systemat-
ically.

The gf Resource Library may make use of
the approach for optimisation reasons. System-
atic exploration can lead to more efficient gram-
mars, which is generally interesting for application-
oriented grammar engineering. Moreover, it might
be possible to get more out of sharing analyses be-
tween different application grammars if code gener-
ation were introduced. For now, it seems that most
of the sharing is done through the core grammar in
gf.

Despite the occasional influence of practical as-

9

pects, both (x)mg and ParGram aim for represent-
ing theoretical assumptions from tag and, respec-
tively, lfg correctly. Systematic exploration would
make the grammars more flexible to changes in the
theory and increase the support the respective the-
ories can get from implemented grammars. Tracy
King (p.c.) confirmed that an approach like climb
would have been very useful for ParGram when
dealing with the question whether adjectives have
subjects, mentioned in the introduction.

Of all projects mentioned in this section, the pro-
posal made in this thesis is in my opinion most rel-
evant for CoreGram. The grammars in this project
are all intended to provide correct hpsg models of
language. To my knowledge, they are not applica-
tion driven and will therefore not make practical
decisions to improve grammar performance if this
is not in line with hpsg theory. Even though the
CoreGram developers are probably not interested
in experiments comparing computational efficiency,
they seem to care more than the other approaches
about finding correct linguistic analyses. Theoret-
ical syntax suffers as much from inclusive evidence
supporting multiple alternative analyses and poten-
tial interactions as grammar engineering does, if
not more. Adapting an approach similar to that of
climb for the CoreGram grammars would there-
fore, in my opinion, mean a significant improve-
ment in their methodology.

6 Discussion and Conclusion

This summary has introduced the idea of using
metagrammar engineering as a general approach for
grammar development. I have argued that this pro-
posal addresses a fundamental challenge in gram-
mar engineering and syntactic theory. The imple-
mentation of this idea climb and several studies
revealing its potential have been outlined. Finally,
I discussed the most closely related work. In this
section, I will provide a brief discussion of the main
open issues, which is followed by concluding re-
marks.

The main challenge in adopting climb as a gen-
eral method for writing hpsg grammars is the
learning curve grammar engineers may experience
when starting to work with climb. As mentioned
in Section 2, switching back and forth between pro-
cedural and declarative programming can be a hur-

dle even for proficient coders in both Python and
tdl. The main focus of future work on climb
will therefore be to design a declarative form of
climb that supports the full flexibility of proce-
dural climb. Another obvious direction of future
work is to expand the studies in German syntax.
The experiments with gclimb confirmed earlier hy-
potheses about the efficiency of alternative analy-
ses, but their overall validity would need to con-
firmed by testing their interaction with analyses in
other large hpsg grammars for German.

The thesis did present several results that show
the potential of climb. It is easier to adapt a gram-
mar written in climb to cover phenomena that
behave slightly differently in a related language.
Three alternative analyses for German auxiliaries
and word order were compared in grammars cov-
ering a wide range of phenomena. Their efficiency
was compared and a study involving the interaction
between linguistic properties, alternative analyses
and efficiency in natural language generation was
conducted using climb. These results show that
climb can be used to conduct empirical research
that would be significantly less feasible (if not vir-
tually impossible) in traditional grammar engineer-
ing. The spring cleaning algorithm developed to
support climb also led to new insights into linguis-
tic precision grammars. The algorithm was applied
to a number of grammars using the Grammar Ma-
trix core resulting in a unique study on the way the
Matrix core is used in individual grammars.

Overall, the methodology proposed in this thesis
and the software developed to support it provide a
platform for research on linguistic precision gram-
mars that could not be carried out before, or only
with great difficulty. This thesis thus succeeded
in its objective to enhance empirical research for
linguistically motivated precision grammars. This
work presented several indicative results which sug-
gest topics to investigate in future work, which is
exactly the outcome one would want when intro-
ducing a new methodology. I believe that a new
method for carrying out research should first and
foremost offer new directions of investigation. It
is my hope that this work will inspire fellow re-
searchers to take the tools offered by this thesis,
explore and learn more about grammars of natural
language.

10

References

Avgustinova, Tania. 2007. Language Family Ori-
ented Perspective in Multilingual Grammar De-
sign. Linguistik International: Band 17, Frank-
furt am Main, Germany: Peter Lang - Eur-
popäischer Verlag der Wissenschaft.

Avgustinova, Tania and Zhang, Yi. 2009. Parallel
Grammar Engineering for Slavic Languages. In
Proceedings of GEAF , Singapore.

Avgustinova, Tania and Zhang, Yi. 2010. Con-
version of a Russian dependency treebank into
HPSG derivations. In Proceedings of TLT’9 .

Bender, Emily M. 2008. Evaluating a Crosslin-
guistic Grammar Resource: A Case Study of
Wambaya. In Proceedings of ACL-08: HLT ,
pages 977–985, Columbus, Ohio: Association for
Computational Linguistics.

Bender, Emily M. 2010. Reweaving a Grammar for
Wambaya: A Case Study in Grammar Engineer-
ing for Linguistic Hypothesis Testing. Linguistic
Issues in Language Technology 3(3), 1–34.

Bender, Emily M., Drellishak, Scott, Fokkens,
Antske, Poulson, Laurie and Saleem, Safiyyah.
2010. Grammar Customization. Research on
Language & Computation 8(1), 23–72.

Bender, Emily M., Flickinger, Dan and Oepen,
Stephan. 2002. The Grammar Matrix: An Open-
Source Starter-Kit for the Rapid Development of
Cross-Linguistically Consistent Broad-Coverage
Precision Grammars. In John Carroll, Nelleke
Oostdijk and Richard Sutcliffe (eds.), Proceed-
ings of the Workshop on Grammar Engineering
and Evaluation at the 19th International Confer-
ence on Computational Linguistics, pages 8–14,
Taipei, Taiwan.

Bender, Emily M., Flickinger, Dan and Oepen,
Stephan. 2011. Grammar Engineering and Lin-
guistic Hypothesis Testing: Computational Sup-
port for Complexity in Syntactic Analysis. In
Language from a Cognitive Perspective: Gram-
mar, Usage and Processing , pages 5–29, Stan-
ford, USA: CSLI Publications.

Bierwisch, Manfred. 1963. Grammatik des
deutschen Verbs, volume II of Studia Grammat-
ica. Akademie Verlag.

Black, Cheryl A. 2004. Parser And Writer for Syn-
tax, paper presented at the International Con-
ference on Translation with Computer-Assisted
Technology: Changes in Research, Teaching,
Evaluation, and Practice, University of Rome
“La Sapienza”, April 2004.

Black, Cheryl A. and Black, H. Andrew. 2009.
PAWS: Parser And Writer for Syntax: Drafting
Syntactic Grammars in the Third Wave. In SIL
Forum for Language Fieldwork , volume 2.

Butt, Miriam, Dyvik, Helge, King, Tracy Holloway,
Masuichi, Hiroshi and Rohrer, Christian. 2002.
The Parallel Grammar Project. In John Carroll,
Nelleke Oostdijk and Richard Sutcliffe (eds.),
Proceedings of the Workshop on Grammar Engi-
neering and Evaluation at the 19th International
Conference on Computational Linguistics, pages
1–7.

Candito, Marie-Hélène. 1999. Organisation modu-
laire et paramétrable de grammaires électroniques
lexicalisées. Application au franćais et á l’italien.
Ph. D.thesis, l’université Paris 7.

Carpenter, Bob. 1992. The Logic of Typed Fea-
ture Structures. Cambridge Tracts in Theorerti-
cal Computer Science, No. 32, New York, USA:
Cambridge University Press.

Copestake, Ann. 2002. Implementing Typed Feature
Structure Grammars. Stanford, CA: CSLI Pub-
lications.

Copestake, Ann, Flickinger, Dan, Sag, Ivan and
Pollard, Carl. 2005. Minimal Recursion Seman-
tics. An Introduction. Journal of Research on
Language and Computation 3(2–3), 281 – 332.

Cramer, Bart. 2011. Improving the feasibility of
precision-oriented HPSG parsing . Ph. D.thesis,
Saarland University.

Fokkens, Antske. 2011. Metagrammar engineer-
ing: Towards systematic exploration of imple-
mented grammars. In Proceedings of the 49th An-
nual Meeting of the Association for Computa-
tional Linguistics: Human Language Technolo-
gies, pages 1066–1076, Portland, Oregon, USA:
Association for Computational Linguistics.

11

Fokkens, Antske and Avgustinova, Tania. 2013.
SlaviCLIMB: Combining exp ertise for Slavic
grammar development using a metagrammar. In
Denys Duchier and Yannick Parmentier (eds.),
Proceedings of the Workshop on High-Level
Methodologies for Grammar Engineering at ESS-
LLI 2013 , Düsseldorf, Germany.

Fokkens, Antske, Avgustinova, Tania and Zhang,
Yi. 2012. CLIMB grammars: three projects
using metagrammar engineering. In Nicoletta
Calzolari, Khalid Choukri, Thierry Declerck,
Mehmet Uǧur Doǧan, Bente Maegaard, Joseph
Mariani, Jan Odijk and Stelios Piperidis (eds.),
Proceedings of the Eighth International Con-
ference on Language Resources and Evaluation
(LREC 2012), Instanbul, Turkey: European
Language Resources Association (ELRA).

Fokkens, Antske and Bender, Emily M. 2013. Time
Travel in Grammar Engineering. Using a Meta-
grammar to Broaden the Search Space. In Denys
Duchier and Yannick Parmentier (eds.), Proceed-
ings of the Workshop on High-Level Methodolo-
gies for Grammar Engineering at ESSLLI 2013 ,
Düsseldorf, Germany.

Fokkens, Antske, Zhang, Yi and Bender, Emily.
2011. Spring Cleaning and Grammar Compres-
sion: Two Techniques for Detection of Redun-
dancy in HPSG grammars. In Proceedings of the
25th PACLIC , Singapore, Singapore.

Fokkens, Antske S. 2010. Documentation for the
Grammar Matrix word order library. Technical
Report, Saarland University.

Hinrichs, Erhard and Nakazawa, Tsuneko. 1994.
Linearizing AUXs in German Verbal Complexes.
In John Nerbonne, Klaus Netter and Carl Pollard
(eds.), German in HPSG , Chapter 1, Stanford,
USA: CSLI.

King, Tracy Holloway, Forst, Martin, Kuhn, Jonas
and Butt, Miriam. 2005. The Feature Space in
Parallel Grammar Writing. Research on Lan-
guage and Computation, Special Issue on Shared
Representations in Multilingual Grammar Engi-
neering 3(2), 139–163.

Marimon, Montserrat. 2010. The Spanish Re-
source Grammar. In Nicoletta Calzolari (Confer-
ence Chair), Khalid Choukri, Bente Maegaard,

Joseph Mariani, Jan Odijk, Stelios Piperidis,
Mike Rosner and Daniel Tapias (eds.), Pro-
ceedings of the Seventh International Conference
on Language Resources and Evaluation (LREC
2010), Valetta, Malta: European Language Re-
sources Association (ELRA).

Müller, Stefan. 1999. Deutsche Syntax deklarativ.
Head-Driven Phrase Structure Grammar für das
Deutsche. Tübingen: Max Niemeyer Verlag.

Müller, Stefan. 2013. The CoreGram Project:
A Brief Overview and Motivation. In Denys
Duchier and Yannick Parmentier (Eds) (eds.),
Proceedings of the Workshop on High-level
Methodologies for Grammar Engineering
(HMGE 2013), Düsseldorf, Germany.

Müller, Stefan and Kasper, Walter. 2000. HPSG
analysis for German. In Wolfgang Wahlster
(ed.), Verbmobil: Foundations of Speech-to-
Speech translation, pages 238 – 253, Berlin, Ger-
many: Springer.

Müller, Stefan and Ørsnes, Bjarne. to appear. Dan-
ish in Head-Driven Phrase Structure Grammar.
Ms, Freie Universität Berlin.

Pollard, Carl and Sag, Ivan. 1994. Head-Driven
Phrase Structure Grammar . Chicago, USA: Uni-
versity of Chicago Press.

Ranta, Aarne. 2009. The GF Resource Grammar
Library. Linguistic Issues in Language Technol-
ogy 2(2).

Riezler, Stefan, King, Tracy Holloway, Ka-
plan, Ronald M., Crouch, Richard, III, John
T. Maxwell and Johnson, Mark. 2002. Pars-
ing the Wall Street Journal using a Lexical-
Functional Grammar and discriminative estima-
tion techniques. In Proceedings of ACL.

Siegel, Melanie and Bender, Emily M. 2002. Ef-
ficient Deep Processing of Japanese. In Proceed-
ings of the 3rd Workshop on Asian Language Re-
sources and International Standardization at the
19th International Conference on Computational
Linguistics, Taipei, Taiwan.

Sygal, Yael and Wintner, Shuly. 2011. Towards
Modular Development of Typed Unification
Grammars. Computational Linguistics 37(1),
29–74.

12

Uszkoreit, Hans. 1987. Word Order and Con-
stituent Structure in German. Stanford, USA:
CSLI Publications.

13

A Appendix

if ch.get(‘obj-raising’) == ‘yes’:

if ch.get(‘has-reflexives’):

mylang.add(‘obj-raising-verb-lex := non-refl-verb-lex.’)

else:

mylang.add(‘obj-raising-verb-lex := main-verb-lex.’)

typedef = \

‘obj-raising-verb-lex := ditrans-second-arg-raising-lex-item & \

[SYNSEM.LOCAL.CAT.VAL [SUBJ < #subj >, \

SPR < >, \

SPEC < >], \

ARG-ST < #subj & [LOCAL.CAT [VAL.SPR < >]], [], [] >].’

mylang.add(typedef)

if ch.get(‘vc-analysis’) == ‘aux-rule’:

comps_struc = \

‘[SYNSEM.LOCAL.CAT.VAL.COMPS < #obj, #vcomp >, \

ARG-ST < [], #obj & [LOCAL.CAT.VAL.SPR < >], \

#vcomp & [LOCAL.CAT.VAL.SUBJ < [] >] >].’

else:

comps_struc = \

‘[SYNSEM.LOCAL.CAT.VAL.COMPS < #obj, #vcomp . #comps >, \

ARG-ST < [], #obj & [LOCAL.CAT.VAL.SPR < >], \

#vcomp & [LOCAL.CAT.VAL [SUBJ < [] >, \

COMPS #comps]] >].’

mylang.add(‘obj-raising-verb-lex := ’ + comps_struc)

1

obj-raising=yes

has-reflexives=on

vc-analysis=aux-rule

obj-raising=yes

has-reflexives=on

vc-analysis=basic

obj-raising-verb-lex := non-refl-verb-lex &

ditrans-second-arg-raising-lex-item &

[SUBJ < #subj >, SPR < >, SPEC < >],

ARG-ST < #subj & [SPR < >], [], [] >].

Begin=aux-rule-vc

obj-raising-verb-lex :=

[COMPS < #obj, #vcomp >,

ARG-ST < [], #obj & [SPR < >],

#vcomp & [SUBJ < [] >] >].

End=aux-rule-vc

Begin=basic-vc

[COMPS < #obj, #vcomp . #comps >,

ARG-ST < [], #obj & [SPR < >],

#vcomp & [SUBJ < [] >,

COMPS #comps] >].

End=basic-vc

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[SYNSEM.LOCAL.CAT.VAL [SUBJ < #subj >, SPR < >, SPEC < >,

COMPS < #obj, #vcomp >],

ARG-ST <[], #obj & [LOCAL.CAT.VAL.SPR < >],

#vcomp & [LOCAL.CAT.VAL.SUBJ <[]>] >].

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[SYNSEM.LOCAL.CAT.VAL [SUBJ < #subj >, SPR < >, SPEC < >,

COMPS < #obj, #vcomp . #comps >],

ARG-ST <[], #obj & [LOCAL.CAT.VAL.SPR < >],

#vcomp & [LOCAL.CAT.VAL [SUBJ <[]>,

COMPS #comps]] >].

2

obj-raising-verb-lex := non-refl-verb-lex &

ditrans-second-arg-raising-lex-item &

[SUBJ < #subj >, SPR < >, SPEC < >],

ARG-ST < #subj & [SPR < >], [], [] >].

Begin=aux-rule-vc

obj-raising-verb-lex :=

[COMPS < #obj, #vcomp >,

ARG-ST < [], #obj & [SPR < >],

#vcomp & [SUBJ < [] >] >].

End=aux-rule-vc

Begin=basic-vc

[COMPS < #obj, #vcomp . #comps >,

ARG-ST < [], #obj & [SPR < >],

#vcomp & [SUBJ < [] >,

COMPS #comps] >].

End=basic-vc

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[SYNSEM.LOCAL.CAT.VAL [SUBJ < #subj >, SPR < >, SPEC < >,

COMPS < #obj, #vcomp >],

ARG-ST <[], #obj & [LOCAL.CAT.VAL.SPR < >],

#vcomp & [LOCAL.CAT.VAL.SUBJ <[]>] >].

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[SYNSEM.LOCAL.CAT.VAL [SUBJ < #subj >, SPR < >, SPEC < >,

COMPS < #obj, #vcomp . #comps >],

ARG-ST <[], #obj & [LOCAL.CAT.VAL.SPR < >],

#vcomp & [LOCAL.CAT.VAL [SUBJ <[]>,

COMPS #comps]] >].

2

Figure 1: Snippet of procedural climb code with alternative choices and their output. The small boxes
to the left of the figure are partial choices files, while the (declarative) tdl code at the top and bottom
shows the system output according to those choices. This example illustrates variations of object raising
verbs depending on the presence or absence of reflexives and chosen analysis for verbal clusters.

14

obj-raising-verb-lex := non-refl-verb-lex &

ditrans-second-arg-raising-lex-item &

[SUBJ < #subj >,

SPR < >,

SPEC < >],

ARG-ST < #subj & [SPR < >], [], [] >].

Begin=aux-rule-vc

obj-raising-verb-lex :=

[COMPS < #obj, #vcomp >,

ARG-ST < [], #obj & [SPR < >],

#vcomp & [SUBJ < [] >] >].

End=aux-rule-vc

Begin=basic-vc

[COMPS < #obj, #vcomp . #comps >,

ARG-ST < [], #obj & [SPR < >],

#vcomp & [SUBJ < [] >,

COMPS #comps] >].

End=basic-vc

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[SYNSEM.LOCAL.CAT.VAL [SUBJ < #subj >,

SPR < >,

SPEC < >,

COMPS < #obj, #vcomp >],

ARG-ST <[], #obj & [LOCAL.CAT.VAL.SPR < >],

#vcomp & [LOCAL.CAT.VAL.SUBJ <[]>] >].

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[SYNSEM.LOCAL.CAT.VAL [SUBJ < #subj >,

SPR < >,

SPEC < >,

COMPS < #obj, #vcomp . #comps >],

ARG-ST <[], #obj & [LOCAL.CAT.VAL.SPR < >],

#vcomp & [LOCAL.CAT.VAL [SUBJ <[]>,

COMPS #comps]] >].

2

category=analysis

exclude=basic-vc

category=analysis

exclude=aux-rule-vc

obj-raising-verb-lex := non-refl-verb-lex &

ditrans-second-arg-raising-lex-item &

[SUBJ < #subj >, SPR < >, SPEC < >],

ARG-ST < #subj & [SPR < >], [], [] >].

Begin=aux-rule-vc

obj-raising-verb-lex :=

[COMPS < #obj, #vcomp >,

ARG-ST < [], #obj & [SPR < >],

#vcomp & [SUBJ < [] >] >].

End=aux-rule-vc

Begin=basic-vc

[COMPS < #obj, #vcomp . #comps >,

ARG-ST < [], #obj & [SPR < >],

#vcomp & [SUBJ < [] >,

COMPS #comps] >].

End=basic-vc

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[SYNSEM.LOCAL.CAT.VAL [SUBJ < #subj >, SPR < >, SPEC < >,

COMPS < #obj, #vcomp >],

ARG-ST <[], #obj & [LOCAL.CAT.VAL.SPR < >],

#vcomp & [LOCAL.CAT.VAL.SUBJ <[]>] >].

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[SYNSEM.LOCAL.CAT.VAL [SUBJ < #subj >, SPR < >, SPEC < >,

COMPS < #obj, #vcomp . #comps >],

ARG-ST <[], #obj & [LOCAL.CAT.VAL.SPR < >],

#vcomp & [LOCAL.CAT.VAL [SUBJ <[]>,

COMPS #comps]] >].

2

obj-raising-verb-lex := non-refl-verb-lex &

ditrans-second-arg-raising-lex-item &

[SUBJ < #subj >, SPR < >, SPEC < >],

ARG-ST < #subj & [SPR < >], [], [] >].

Begin=aux-rule-vc

obj-raising-verb-lex :=

[COMPS < #obj, #vcomp >,

ARG-ST < [], #obj & [SPR < >],

#vcomp & [SUBJ < [] >] >].

End=aux-rule-vc

Begin=basic-vc

[COMPS < #obj, #vcomp . #comps >,

ARG-ST < [], #obj & [SPR < >],

#vcomp & [SUBJ < [] >,

COMPS #comps] >].

End=basic-vc

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[SYNSEM.LOCAL.CAT.VAL [SUBJ < #subj >, SPR < >, SPEC < >,

COMPS < #obj, #vcomp >],

ARG-ST <[], #obj & [LOCAL.CAT.VAL.SPR < >],

#vcomp & [LOCAL.CAT.VAL.SUBJ <[]>] >].

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[SYNSEM.LOCAL.CAT.VAL [SUBJ < #subj >, SPR < >, SPEC < >,

COMPS < #obj, #vcomp . #comps >],

ARG-ST <[], #obj & [LOCAL.CAT.VAL.SPR < >],

#vcomp & [LOCAL.CAT.VAL [SUBJ <[]>,

COMPS #comps]] >].

2

Figure 2: Snippet of declarative climb code with alternative choices and their output. It shows the
implementation of a basic type for object raising in declarative climb. The example includes alternative
additions made to the basic type depending on the analysis chosen for verbal clusters (like in Fig. 1)

15

